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Tropical forest ecosystems are undergoing rapid transformation as a result of changing environmental con-
ditions and direct human impacts. However, we cannot adequately understand, monitor or simulate trop-
ical ecosystem responses to environ
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mental changes without capturing the high diversity of plant functional characteristics in the species-rich trop-
ics. Failure to do so can oversimplify our understanding of ecosystems responses to environmental disturbances.
Innovative methods and data products are needed to track changes in functional trait composition in tropical
forest ecosystems through time and space. This study aimed to track key functional traits by coupling Sentinel-2
derived variables with a unique data set of precisely located in-situ measurements of canopy functional traits
collected from 2434 individual trees across the tropics using a standardised methodology. The functional traits
and vegetation censuses were collected from 47 field plots in the countries of Australia, Brazil, Peru, Gabon,
Ghana, and Malaysia, which span the four tropical continents. The spatial positions of individual trees above
10cm diameter at breast height (DBH) were mapped and their canopy size and shape recorded. Using geo-lo-
cated tree canopy size and shape data, community-level trait values were estimated at the same spatial resolution
as Sentinel-2 imagery (i.e. 10m pixels). We then used the Geographic Random Forest (GRF) to model and predict
functional traits across our plots. We demonstrate that key plant functional traits can be measured at a pantrop-
ical scale using the high spatial and spectral resolution of Sentinel-2 imagery in conjunction with climatic and
soil information. Image textural parameters were found to be key components of remote sensing information for
predicting functional traits across tropical forests and woody savannas. Leaf thickness (R2 =0.52) obtained the
highest prediction accuracy among the morphological and structural traits and leaf carbon content (R2 =0.70)
and maximum rates of photosynthesis (R2 =0.67) obtained the highest prediction accuracy for leaf chemistry
and photosynthesis related traits, respectively. Overall, the highest prediction accuracy was obtained for leaf
chemistry and photosynthetic traits in comparison to morphological and structural traits. Our approach offers
new opportunities for mapping, monitoring and understanding biodiversity and ecosystem change in the most
species-rich ecosystems on Earth.

1. Introduction

Some of the most urgent questions in ecology and ecosystem science
today focus on how communities of organisms respond to global envi-
ronmental changes (Naeem et al., 2009), how biodiversity and ecosys-
tem changes across the world can be consistently mapped and mon-
itored (Navarro et al., 2017), and how spatial, temporal and taxo-
nomic variability in biodiversity influences ecosystem resilience to cli-
mate change (Oliver et al., 2015). In terms of Earth system science, we
need to understand and model how the terrestrial biosphere will re-
spond (and already is responding) to global environmental change, and
whether there are critical thresholds or “tipping points” beyond which
major biomes may not be able to recover. Nowhere is the challenge
more urgent than in the species-rich tropical forest and woody savanna
biomes, which together are home to more than half of global biodiver-
sity and over 60% of terrestrial productivity (Beer et al., 2010). There
is evidence that atmospheric change may have effects on tropical for-
est productivity and tree functional composition (Esquivel-Muelbert et
al., 2019; Hubau et al., 2020). These effects may include a stimulation
of productivity (perhaps due to rising CO2) and/or a degradation or
dieback, possibly caused by increased seasonality and incurred intensity
of extreme drought events (Malhi et al., 2008; Malhi et al., 2018). Such
events are partly responsible for the increased tree mortality and de-
creased carbon residence time in tropical forests worldwide (McDowell
et al., 2018). However, to adequately understand such responses we
need to capture and map the high diversity of plant ecosystem function
in the species-rich tropics and savannas.

Species functional traits are defined as the morphological, physi-
ological or phenological attributes which determine the fitness of or-
ganisms, their response to changes in the environment and their influ-
ence on ecosystem functions (Kissling et al., 2018; Díaz and Cabido,
2001). Functional traits provide tangible and mechanistic means of as-
sessing the ability of communities to adapt to climate change (Pacifici
et al., 2015) and play a major role in determining ecosystem productiv-
ity, functioning and notably nature's contribution to people (e.g. water
and wood availability) (Díaz et al., 2019; Carmona et al., 2016). Any
tools or methods that facilitate quantification of functional traits across
large spatial scales and at high spatial resolution would be invaluable
for quantifying ecosystem functioning and ecological responses to dis-
turbance at scales relevant for policy and management (Kissling et al.,
2018). However, it is still challenging to map functional trait diversity
in tropical regions given the lack of plant trait data available for most
of those locations (Jetz et al., 2016). Additional challenges come from
different and often incompatible trait collection protocols and the lack
of systematic high spatial, spectral and temporal resolution remote sens-
ing imagery that coincides with data for functional traits at the canopy
level and the lack of geo-located tree stems at the plot level. Thus, there
is a need for spatially-explicit methods to map and quantify plant func-
tional traits at high spatial resolution in tropical forest and woody sa-

Tracking functional traits can shed light on differences in ecosystem
functioning across broad spatial extents and therefore aid policy and de-
cision making, e.g. for creating adequate biodiversity conservation poli-
cies or for providing early warning of directional shifts in ecosystems.
The key challenges of any functional trait approach are scalability and
monitoring: how can functional shifts in highly diverse tropical forests
and woody savannas be monitored and tracked over large spatial ex-
tents? Intensive field sampling of plant functional traits at a pantropi-
cal scale is time-consuming and economically unviable. There are large
gaps in the availability of plant trait data globally, and the largest gaps
are in the tropics (Jetz et al., 2016). Large plant trait datasets aim to
overcome this issue and have advanced our ability to carry out plant
functional trait analysis in an unprecedented way (Kattge et al., 2020;
Gallagher et al., 2020). However, as with any database, the plant trait
values from such databases will represent the local trait-environment re-
lationships for the site where they were collected, which may not be the
area of interest. A key assumption in trait-based ecology is that the en-
vironment is filtering for an optimal set of trait characteristics so that
the resulting communities are adapted to the environment where they
are distributed (Fell and Ogle, 2018; Lebrija-Trejos et al., 2010; Lortie et
al., 2004). Hence, we might expect an optimal set of trait characteristics
for a given location, which when analysed over time could quantify the
dynamics of community trait distributions or shifts in functional compo-
sition relating to environmental changes (Enquist et al., 2015).

Recently, there has been an increasing investment into mapping
plant functional trait distributions given economic and data availability
constraints such efforts have mostly focused on hyperspectral imagery
at local (Schneider et al., 2017) to regional scales (Asner et al., 2015;
Asner et al., 2016). However, high resolution hyperspectral imagery is
not widely available (Clark, 2017; Szabó et al., 2019). Landsat-8 im-
agery at coarser spatial (30m pixel), spectral and temporal resolution
than Sentinel-2 imagery has been used to map four traits over small
(20×20m) vegetation plots covering small spatial extents (Wallis et al.,
2019). The spatial mismatch between site-level trait sampling and the
spatial resolution of pixels may partly affect overall model predictions
(Wallis et al., 2019). Other studies restricted to European forests (Ma et
al., 2019) show how Sentinel-2 imagery could be used to map functional
trait diversity in the comparatively low tree diversity forests of Europe
(Ma et al., 2019) and to retrieve specific leaf area from Landsat-8 im-
agery (Ali et al., 2017). However, the tropics present a different set of
challenges, such as the high species richness, low accessibility and com-
paratively low availability of trait data, plus the low coverage of remote
sensing data because of persistent high cloud cover. These challenges
have hampered developments in mapping plant functional trait distrib-
utions across most tropical areas.

Satellite imagery with high spectral, spatial and temporal resolution
is particularly needed in the wet tropics (Asner et al., 2017), where
clear days can be infrequent and several images may be required to con-
struct a cloud-free composite. The Copernicus mission from the Euro-
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www.esa.int) aids in the improvement in this area. The Sentinel-2 mul-
tispectral imager satellites are part of the Copernicus programme, which
has the potential to provide new opportunities to evaluate canopy
traits remotely. Sentinel-2 has 13 spectral channels covering the visi-
ble, near-infrared, and short-wave infrared, a spatial resolution of 10m
for visible and near-infrared, 20m for short-wave infrared, revisit pe-
riod of 5days and it provides open data availability. The improved spec-
tral sampling (13 bands, 10 excluding the 60m atmospheric bands) and
fine spatial resolution of the Sentinel-2 images have the potential to
elucidate leaf chemistry, morphology, photosynthesis and water content
at the pixel-level, although this remains largely untested. Multispectral
sensors do not provide the rich information available from hyperspec-
tral sensors, which have been used in numerous studies to map func-
tional traits at small spatial extents (Townsend et al., 2003; Laurin et
al., 2016; Asner et al., 2015; Martin et al., 2008). However, high resolu-
tion open-access hyperspectral imagery is not currently available from
space. Although Landsat images have been used to predict a few func-
tional traits at a local scale (Wallis et al., 2019), the extended spectral,
spatial and temporal capabilities of the state-of-the-art sensors onboard
the Sentinel-2 satellites provide greater potential for mapping functional
trait diversity in tropical forest ecosystems at large extents.

Here, we employ a unique and large dataset of in-situ plant canopy
traits and vegetation census data collected with a standardised proto-
col at multiple sites across the tropics to calibrate and validate Sen-
tinel-2 imagery for predicting community leaf trait composition. The
data provide 14 standardised measurements of in-situ collected plant
functional traits, precisely geo-located and delineated individual tree
crowns and vegetation censuses from Australia, South East Asia, Africa
and South America to model and predict functional trait composition at
the pixel-level. We investigate how functional traits of tropical forests
vary within and between these different tropical regions and whether
Sentinel-2 spectral data in conjunction with climatic and soil informa-
tion provide sufficient information to predict such pixel-level trait com-
position in long-term vegetation plots across the tropics. We hypothe-
sised that there would be differences in trait variation among sites and
regions given the range of climatic and soil conditions across the tropics.
Given the high spectral and spatial resolution of Sentinel-2 imagery we
further hypothesised that raw spectral bands and textural information
will prove to be key predictors of functional trait distributions across
the tropics. The very high spatial resolution and local origin of the input
plant traits and census dataset, which represent traits adapted to local
environments, plus the use of the Sentinel-2 data will allow us to ac-
curately predict plant functional trait distributions that are potentially
generalisable across the tropical forest biome.

2. Methods

2.1. Vegetation plots

We collected vegetation census data from 47 permanent vegetation
plots that are part of the Global Ecosystems Monitoring network (GEM;
www.gem.tropicalforests.ox.ac.uk). These plots encompass wet tropical
forests, seasonally dry tropical forests, and tropical forest-savanna tran-
sitional vegetation. The sampled vegetation plots have an area ranging
from 0.1 to 1ha, with most (61%) being 1ha. The plots used are located
across four tropical continents and specifically in the countries of Aus-
tralia, Brazil, Gabon, Ghana, Malaysian Borneo (from here onwards re-
ferred to as Malaysia) and Peru (Table 1). In each plot all woody plant
individuals with a diameter ≥ 10cm at breast height (DBH) or above
buttress roots were measured and their exact geographic location was
recorded (see the ‘Individual tree crowns’ section below for more de-
tails). In two plots (NXV-01 and NXV-10) in Nova Xavantina, here on-
wards referred to as Brazil-NX, the DBH was measured near ground level
as is standard in savanna monitoring protocols.

2.2. Functional traits

We collected plant functional trait measurements from all woody
plants located in each of the 47 vegetation plots mentioned above
(Table 2). All traits

were gathered from the GEM network and were collected following a
standardised methodology across plots. Forest inventory data were used
to stratify tree species by basal area dominance, a proxy for canopy area
dominance. The tree species that contributed most to basal area abun-
dance were sampled with 3–5 replicate individuals per species, with
a goal of sampling 60–80% of basal area across the sampling region.
Eighty percent of basal area was often achieved in low diversity sites
(e.g. montane or dry forests) but only around 60% was achieved in some
high diversity sites (lowland humid rainforests). For each selected tree
a sun and a shade branch were sampled and in each branch 3–5 leaves
were used for trait measurements. We only included the sun exposed
branches in our analysis because we were interested in the branches
that could potentially be receiving direct sun radiation and thus show
direct spectral reflectance. This represented a total sample of 2434 in-
dividual trees across the tropics (Table 1). The plant functional traits
collected were those related to photosynthetic capacity at both saturat-
ing CO2 concentration (2000ppm CO2; Amax) and ambient CO2 concen-
tration (400ppm CO2; Asat); leaf chemistry (nitrogen, phosphorus, car-
bon, calcium, potassium and magnesium content); and leaf morpholog-
ical and structural traits (area, specific leaf area, thickness, dry mass,
fresh mass and water content). An overview of the methods for individ-
ual leaf functional trait measurements is provided in the Supplementary
Information (see full traits collection protocol section). Further details
of measurements for the Peruvian Andes campaign are given in Martin
et al. (2020) and Enquist et al. (2017), for the Malaysian campaign in
Both et al. (2019), and for the Ghana and Brazil campaigns in Oliveras
et al. (2020) and Gvozdevaite et al. (2018).

Some individuals in the plots lacked functional trait values. To assign
representative trait values to unsampled individuals we did the follow-
ing: 1) individuals from which traits were measured kept their original
trait information, 2) for individuals with no trait information we ran-
domly sampled trait values from other individuals from the same species
present in the same plot, 3) if the species was not sampled in the given
plot then we randomly sampled an individual from the same species that
had trait information in other plots from the same region (Table 1). This
protocol for trait value allocation allowed us to work with the existing
range of trait values at the species level and avoided to create average
values per species (Cadotte et al., 2011; Schneider et al., 2017). We did
not assign trait values to the remaining individuals belonging to species
from which no trait collection was obtained at the regional level.

2.3. Individual tree crowns

Tree crown locations and structural attributes were recorded for
each tree, where crown area and shape were measured by direct crown
field measurements in the case of plots in Malaysia and Peru (see pro-
tocol below), or by means of regional level allometric equations devel-
oped by Shenkin et al. (2019) (all other plots). In the latter case, the
crown's shape was assumed to be circular. The direct field crown mea-
surements were as follows: all trees ≥10cm DBH (i.e., 1.3m from the
ground) were mapped using a ground-based Field-Map laser technology
(IFER, Ltd., Jílové u Prahy, Czech Republic) (Hédl et al., 2009). The
Field-Map technology was based on a combination of Impulse 200 Stan-
dard laser rangefinder (with in-built tilt sensor for measuring vertical
angles), MapStar module II electronic compass (both Laser Technology
Inc., Colorado, USA), and the specialized mapping software Field-Map
v. 11 (IFER, Czech Republic). The technology was used to record spa-
tial positions of tree stems in three-dimensional space (x, y, z-coordi-
nates) as well as to map individual horizontal projections of tree crowns
in the plots. The horizontal crown projection of every tree was ob-
tained by measuring spatial positions (x and y-coordinates) of series
of points (ranging from 5 to 30 points depending on the size of the
crown) at the boundary of a crown projected to the horizontal plane.
The shape of crown projection was subsequently smoothed using the
“smooth contour line” feature of Field-Map software v. 11. Heights of
all trees with DBH ≥ 10cm were measured by the Impulse and TruPulse
360 R laser rangefinders (both Laser Technology Inc., Colorado, USA).
Thus, each individual crown was accurately geolocated rendering infor-
mation about its shape and vertical and horizontal position.
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Table 1
Collection details for vegetation plots and plant functional traits. A total of 2434 individual trees were sampled for functional traits.

Location Species sampled for traits Plot code Size (ha) Centroid coordinates Date of collection

X Y Vegetation census Traits

Australia 81 AEP-02 0.5 145.586 −17.146 2011 June–September 2015
AEP-03 0.5 145.592 −17.088
DRO-01 0.9 145.430 −16.103
ROB-06 1 145.630 −17.121

Ghana 63 ANK-01 1 −2.696 5.268 2013 October–March 2015/2016gramm
ANK-03 1 −2.692 5.271
BOB-01 1 −1.339 6.691 2015
BOB-02 1 −1.319 6.704

Gabon 41 LPG-01 1 11.574 −0.174 2014 February–March 2017
LPG-02 1 11.615 −0.216
MNG-04 1 9.324 0.577 2016

Brazil -NX 64 NXV-01 1 −52.352 −14.708 2015 March–May 2014
NXV-02 1 −52.351 −14.701
VCR-02 1 −52.168 −14.832
NXV-10-1 0.1 −52.353 −14.713 2014
NXV-10-2 0.1 −52.352 −14.713
NXV-10-3 0.1 −52.351 −14.713
NXV-10-4 0.1 −52.349 −14.713
NXV-10-5 0.1 −52.346 −14.713
NXV-10-6 0.1 −52.349 −14.712
NXV-10-7 0.1 −52.348 −14.711
NXV-10-8 0.1 −52.347 −14.711
NXV-10-9 0.1 −52.347 −14.711
NXV-10-10 0.1 −52.346 −14.712

Brazil -ST 136 261–10 0.25 −55.005 −3.019 2014 August–September 2015
261–9 0.25 −55.015 −3.040
363–6 0.25 −54.956 −3.337
363–3 0.25 −54.963 −3.297
363–7 0.25 −54.961 −3.321

Peru 159 ESP-01 1 −71.595 −13.176 2013 April–November 2013
PAN-02 1 −71.263 −12.650
SPD-01 1 −71.542 −13.047
SPD-02 1 −71.537 −13.049
TRU-04 1 −71.589 −13.106
WAY-01 1 −71.587 −13.191
ACJ-01 1 −71.632 −13.147 2014
PAN-03 1 −71.274 −12.638
TAM-05 1 −69.271 −12.830
TAM-06 1 −69.296 −12.839

Malaysia 283 SAF-01 1 4.732 117.619 2016 July–December 2015
SAF-02 1 4.739 117.617
SAF-03 1 4.691 117.588
SAF-04 1 4.765 117.700
DAN-04 1 4.951 117.796
DAN-05 1 4.953 117.793
MLA-01 1 4.747 116.970
MLA-02 1 4.754 116.950

Brazil -NX: Nova Xavantina; Brazil -ST: Santarem; Malaysia: Malaysian Borneo.

2.4. Calculating pixel-level trait composition

We calculated the community weighted mean of each trait for each
10×10m subplot (matching the highest pixel spatial resolution of the
Sentinel-2 imagery) based on the mass ratio hypothesis, which states
that the most dominant species drive the ecosystem processes by means
of their functional traits (Grime, 1998). We first geolocated the vege-
tation plot, with its already mapped tree crowns (see protocol above),
to the Sentinel-2 imagery based on the corner coordinates of the plots.
This is an important step as geolocation errors between the vegetation
plot and the correct location in the satellite image could represent a
large proportion of a given plot depending on the plots' area. Then for
each of the traits, t, and pixels, p, we calculated their community level
weighted mean (CWM) using the individual tree crown horizontal area
as the weighting factor (Fig. 1) as follows:

(1)

Where CAip is the crown area of individual i in pixel p, tip is the trait
value of individual i in pixel p, N is the total number of individuals per
pixel and CAp is the crown area of pixel p. The crown contribution to the
CWM was weighted by its proportional cover of the corresponding pixel.
The total number of pixels used in our calculations are 403 for Australia,
449 for Brazil -NX (Nova Xavantina), 302 for Brazil -ST (Santarem), 464
for Gabon, 620 for Ghana, 976 for Malaysia and 1280 for Peru.

2.5. Sentinel-2 data, vegetation indices and canopy texture parameters

We gathered Sentinel-2 imagery that was closest in time and season
to the sampling dates of functional traits and vegetation census across
the tropics for each of the study locations (Table S1). The Sentinel-2
imagery was first selected using the European Space Agency (ESA) Sci-
enceHub choosing images with high pixel quality and low cloud cover
(<10%). Atmospheric, radiometric and topographic corrections were
applied to the selected imagery (Level 1C) using the Sen2Cor algo-
rithm in the Sentinel SNAP toolbox (step.esa.int). Our overlapping im-
agery with the vegetation plots appeared free of clouds and cirrus ef-
fects. The above-mentioned steps allowed us to obtain level 2A imagery
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Table 2
Description of plant functional traits collected across the tropics and their relevance under a changing environment.

Trait Abbreviation Units Description Relevance References⁎

Leaf area Area cm2 One-sided area of the
leaf

Higher leaf area could result in higher levels of light
capture and photosynthetic activity.

(Walker et al., 2014, Wright et al.,
2004, Juneau and Tarasoff, 2012, Díaz
et al., 2016, Hawthorne, 1995, Chave et
al., 2006, Huang et al., 2019)

Specific leaf
area

SLA m2 g−1 One-sided area of a leaf
divided by dry mass

Relevant for photosynthetic capacity, light capture,
water loss, net assimilation rate, leaf life span.

Leaf
thickness

Thickness mm Thickness of a fresh leaf Trade-off between decreasing water transpiration at the
expense of higher construction investment and probably
lower photosynthetic efficiency in thicker leaves.

Leaf nitrogen
content

N % Content per unit dry
leaf mass

Nutrient relevant for metabolic reactions, including light
capture, related to photosynthetic capacity and growth.
Restricted availability of some nutrients may limit plant
carbon acquisition and growth.

Leaf
phosphorus
content

P %

Leaf carbon
content

C %

Leaf calcium
content

Ca %

Leaf
potassium
content

K %

Leaf
magnesium
content

Mg %

Leaf water
content

LWC % Amount of water in the
leaf relative to its dry
and fresh mass

Leaf mass is a proxy of leaf biomass investment which
may vary depending on environmental conditions and
phenology of species. It has been considered relevant for
photosynthetic potential.

Leaf dry mass Dry mass g Mass of a dry leaf
Leaf fresh

mass
Fresh mass g Mass of a fresh leaf

Amax Amax μmolm−2 s−1 Light-saturated
maximum rates of net
photosynthesis at
saturated CO2
(2000ppm CO2)

Indicate the maximum CO2 assimilation and are thus
indices of leaf photosynthetic capacity

Asat Asat μmolm−2 s−1 Light-saturated rates of
net photosynthesis at
ambient CO2
concentration
(2000ppm CO2)

⁎ References are not exhaustive.

with surface reflectance values. We then resampled the 20m bands to
10m spatial resolution using bilinear interpolation. The Sentinel-2 60m
resolution bands (B01, B09, B10) were not used as these are designed
for cirrus, water vapour and cloud detection (Table 3). Band 8A was not
used as it covers an overlapping spectral window with band 8 and has
a lower spatial resolution. Since vegetation indices may increase predic-
tion accuracy when modelling community weighted traits (Wallis et al.,
2019), we calculated three of them (Table 3) which we hypothesised to
inform trait distributions given their association with chlorophyll and
nutrient levels in the leaves and their use of the visible-to-red edge spec-
tral bands.

Canopy structure may play an important role in separating dif-
ferent vegetation types and differences in canopy spectral composi-
tion. To characterise canopy structure, we calculated the Grey Level
Co-Occurrence Matrix (GLCM) based texture features (Haralick et al.,
1973). The desired texture metrics are computed from a grey tone
matrix that is spatially dependent. The co-occurrence matrix depends
on the angular relationship and distance between two neighbouring
pixels and depicts the number of occurrences of the relationship be-
tween a pixel and its neighbour. After trials with smaller windows
size (5×5) we opted to use a 9×9 pixel kernel window which was
sufficient to render enough canopy contrast information during the
modelling step (see section 2.7 below) without taking large periods
of time for its calculation. The texture results obtained with the used
kernel window was highly correlated to the smaller kernel window
(Cor=0.94, P ≤ 0.0001). Based on the GLCM we cal

culated two variables that are least correlated with each other, the En-
tropy and Correlation, for each of the vegetation indices. While Entropy
measures the homogeneity level for a given area, the Correlation mea-
sures probability of occurrence of the specified pixel pairs across the im-
age (Haralick et al., 1973; Wallis et al., 2019). All remote sensing analy-
ses related to the generation of vegetation indices and texture metrics
were carried out using the Sentinel SNAP toolbox (step.esa.int) and the
R statistical environment (R Development Core Team, 2014) with the
‘Sen2R’ package.

2.6. Environmental and soil data

Climatic, topographic and soil characteristics may vary across re-
gions and could at least partly determine the region's vegetation and
intrinsic trait composition. We obtained information on these three
components for each sampling location. The three components were
grouped as belonging to environmental (climate) or soil-terrain (texture,
pH, cation exchange capacity and topography) drivers (Table 3).

For climate and for each sampling location we gathered gridded
data on the mean annual climatic water deficit (MCWD), which is a
metric of drought intensity and severity, mean annual maximum tem-
perature (MATmax), solar radiation (SRAD) and soil moisture (SM)
(Table 3). All climatic data with a spatial resolution of ~4km were
obtained from the TerraClimate gridded climate product (Abatzoglou
et al., 2018). To characterise the climatic conditions for
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Fig. 1. Diagram summarising the steps followed to assign trait values per Sentinel-2 pixel. 1) First the vegetation plots are defined based on the GEM (Global Environmental Monitoring)
dataset and 2) from each vegetation plot the corner coordinates are extracted. 3) From each vegetation plot the XY position of each stem ≥10cm DBH is extracted and 4) the crown
horizontal area is calculated based on the protocol described in the methods section. 5) Then the Sentinel-2 imagery for the study area is processed to level 2A using the ESA SNAP toolbox
and 6) the vegetation plot is overlaid in the Sentinel-2 image based on its corner coordinates. In this last step (6) each pixel defines a ‘subplot’ which is the unit used to calculate the trait
community weighted mean based on the crown area of the trees that are contained by that pixel. In 6) n refers to a given tree in a given pixel, trait i represents a given trait and x and y
are values for that trait. The image used as an example in step (1) was taken by Jesus Aguirre-Gutierrez over a vegetation plot using a multispectral ALTUM camera mounted on an Inspire
1 drone.”

each location we used a climatology of 30years (1986–2015) as sug-
gested by the World Meteorological Organization (WMO; www.wmo.
int/pages/prog/wcp/ccl/faqs.php). We used the terrain slope to char-
acterise the plot's topography, as it has been shown that topography
may shape the composition and

structure of tropical forests (Jucker et al., 2018) and may affect the
vegetation spectral reflectance by modifying soil water and nutrient
availability. Terrain slope was calculated using a high-resolution dig-
ital elevation model, ~30m pixel size at the equator, from the Shut-
tle Topography Mission (Farr et al.,

6
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Table 3
Spectral remote sensing, environmental and soil related variables used during the mod-
elling protocol. All climatic variables but slope were calculated using a climatology of
30years (1986–2015). All soil variables were calculated for the top 30cm soil layer. Sen-
tinel-2 band wavelengths (nm) are given in parenthesis after the band name.

Type Variable Description References

RS B2 (490), B3
(560), B4 (665),
B8 (842)

Sentinel-2 bands
with spatial
resolution of
10m

www.esa.int

B5 (705), B6
(740), B7 (783),
B11 (1610), B12
(2190)

Sentinel-2 bands
with spatial
resolution of
20m

MCARI Modified
Chlorophyll
Absorption in
Reflectance Index

(Daughtry et al., 2000)

MSAVI2 Modified Soil
Adjusted
Vegetation Index
2

(Qi et al., 1994)

NDRE Normalized
Difference Red
edge Index

(Barnes et al., 2000)

Texture Entropy,
calculated for
vegetation
indices

(Haralick et al., 1973)

Correlation,
calculated for
vegetation
indices

Climate MCWD Mean annual
climatic water
deficit

(Abatzoglou et al., 2018)

MATmax Mean maximum
annual
temperature

SM Soil moisture as a
water balance
indicator

SRAD Downward Solar
Radiation

Soil-
Terrain

eCEC Cation Exchange
Capacity (mmol+
/kg−1)

Plot level soil data from
the Global Environmental
Monitoring (GEM)
database

pH Soil pH (H2O
solution)

Clay (%) Amount of clay
(weight %)

Sand (%) Amount of sand
(weight %)

Slope Terrain slope
(30m resolution)

(Farr et al., 2007)

2007). At most sites soil data were sampled locally, and analysed to a
standardised protocol in labs in either INPA, Manaus, Brazil or the Uni-
versity of Leeds, UK, following the RAINFOR soil protocol (Quesada et
al., 2012). From these data we summarised plot level soil data averaged
over the first 30cm for texture (Sand% and Clay%), cation exchange ca-
pacity (eCEC) and pH-H2O (pH). Plot level texture data were not avail-
able for plots in Australia and the NXV-10 plots and were thus derived
from the SoilGrids dataset at 250m pixel spatial resolution for those
plots only (Hengl et al., 2017).

2.7. Comparing community level trait distributions across regions

We tested if and to what extent the community-level trait distribu-
tions differed among regions. We square-root transformed the trait value
to improve normality and applied an analysis of variance (ANOVA). We
then applied a Tukey's Honest Significant Difference (Tukey HSD) test to
investigate the significance of the differences between the means of the
community weighted mean (CWM) trait values among locations. The
ANOVA and Tukey test were carried out using the ‘stats’ package for R

2.8. Relating pixel-level trait composition to spectral reflectance,
environment and soil conditions

We modelled the community weighted mean (CWM) of each trait at
the pixel-level (10×10m) as a function of the Sentinel-2 remote sens-
ing, environmental and soil covariates (Table 3) using a ‘spatial’ version
of the machine learning Random Forest (RF) algorithm (Breiman, 2001)
named Geographic Random Forests (GRF) (Georganos et al., 2019). RF
is a nonparametric algorithm that has been shown to be robust to over-
fitting and variable inputs thanks to the bagging process and its ran-
dom feature selection (Hastie et al., 2009). Moreover, it has been ex-
tensively used to model and predict ecological and remote sensing data
within and across ecosystems (e.g. Asner et al., 2016; Van der Plas et
al., 2018). In contrast to RF, GRF disaggregates the underlying data in
geographic space, in this case based on the spatial coordinates of the
Sentinel-2 pixels, building global and local sub-models (plot level), mak-
ing the modelling framework thus spatially explicit. The explicit inclu-
sion of the spatial component (XY pixel location) in the models, which
are sequentially fitted with different sets of the training data (the bag-
ging process) may contribute to the observed reduced spatial autocorre-
lation of GRF in comparison to the common RF (Georganos et al., 2019).
In the GRF a global model is built as in other RF applications. How-
ever, GRF also generates a local RF for each location, which includes a
specified number of nearby observations, here defined by all pixels in
the vegetation plot (mostly 1ha; Table 1), called ‘neighbourhood’, ob-
taining in this way metrics of local and global model predictive power
and variable importance. For model predictions, a fusion between the
global model (that uses more data) and local models (with low bias) can
be applied, weighting the contributions of the global and local models
based on the parameters that increase the predictive accuracy and de-
crease the model's Root Mean Square Error (RMSE). We used the spatial
GRF to fit a global model for each functional trait and also fit a specific
model for each region (Australia, Brazil -ST, Brazil -NX, Gabon, Ghana,
Malaysia and Peru) using the SpatialML package in R.

We performed an extensive set of model optimization and regular-
ization procedures to reduce over-fitting. For the CWM models we se-
lected the number of trees to fit by 10-fold cross-validation analysis with
number of trees ranging between 500 and 1500 and the number of vari-
ables randomly sampled as candidates at each split (mtry) ranging be-
tween 1 and 10, using in the final model the combination of terms that
generated the lowest RMSE. All covariates included in the models had
pairwise Pearson correlation coefficients r ≤ 0.82 (Table 3). For the final
global and local models, we used 80% of the data for model fitting and
the remaining 20% for model evaluation. Variable importance for each
model was computed as the decrease in node impurities from splitting
on the variable, averaged over all trees and derived from the Out of Bag
(OOB) error. Then the resulting importance was standardised to a 0–1
scale for comparison purposes.

We carried out all analyses stated above with the full set of tree in-
dividuals present in each vegetation plot with functional traits assum-
ing that the contribution of small individuals to the trait CWM value,
and thus to the community reflectance at the pixel-level, would be min-
imal given the weighting factor used (i.e. the individual's crown area).
However, to underpin this we carried out all analyses on two smaller
datasets, one where the 25th and other where the 50th percentile of the
smallest trees per region were removed. All analyses were carried out
in the R statistical environment with the ‘caret’, ‘tidyverse’ and ‘Spa-
tialML’ packages.

3. Results

3.1. Variation in trait composition across tropical forests

Most leaf functional traits exhibited significant differences across the
tropics (Fig. 2) including wide trait range variation within the same re-
gion (Fig. S8), with leaf fresh mass and leaf thickness being on average
less variable among locations (Table S2).
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Fig. 2. Comparison of trait distributions across tropical regions. The boxplots are based
on the pixel-level (10×10m) community trait values for each trait and region (n=403
for Australia, 449 for Brazil-NX, 302 for Brazil-ST, 464 for Gabon, 620 for Ghana,
976 for Malaysia and 1280 for Peru). Horizontal lines in each boxplot show the me-
dian value and vertical lines are the whiskers that extend to the largest value or not
further than 1.5 times the inter-quartile range. For some loca

tions information for all traits was not available. For full details in significant differences
in mean trait values among locations see Table S4. Brazil -NX: Nova Xavantina; Brazil -ST:
Santarem.

Leaf chemistry and photosynthetic capacity (Amax and Asat) often
showed significant differences among locations (Table S2). Drier loca-
tions as in Nova Xavantina (Brazil -NX) displayed trait adaptations to
seasonal rainfall and temperature with on average thicker and smaller
(30±0.05mm and 56.2±24.7cm2 respectively) leaves at the com-
munity level, with some of the highest community-level leaf nitrogen
concentration (2.2±0.3%) and highest photosynthetic capacity (mean
Amax =21.9±4.3 μmolm−2 s−1, and Asat =8.3±2.5 μmolm−2 s−1). In
contrast, wetter regions such as Malaysia displayed on average some
of the biggest (113.5±55cm2) and thinnest (0.25±0.05mm) leaves
with high leaf water content (59.1±5%). The Peruvian altitudinal tran-
sect showed large variation in community-level traits values, which
often overlapped with trait values from all other sampled locations
across the tropics (Fig. 2). For most nutrients, leaf nutrient concentra-
tion was often highest in forests found in Ghana (e.g. K%=0.97±0.27
and Mg%=0.33±0.1) and Malaysia (K%=1.05±0.27 and
Mg%=0.27±0.1). Australian forests showed on average some of the
lowest community-level N (1.3±0.21%) and P (0.07±0.01%) leaf
concentrations.

3.2. Pantropical and local community level functional trait models

The analyses carried out with the full dataset and the dataset where
the 25th and 50th percentile of the smallest trees per region were re-
moved gave similar results for the global (R2 =0.95 and R2 =0.97 re-
spectively; Table S3) and local (R2 =0.81 and R2 =0.80 respectively;
Table S4) models of plant trait distributions. Therefore, in the following
we only present the results for the models carried out with the full veg-
etation dataset.

The accuracy of the pantropical prediction of functional traits ranged
between a minimum of R2 =0.26, for leaf fresh mass, and a maximum
of R2 =0.70 for leaf carbon content (C%) based on the out-of-sampled
(testing) data across the tropics (Table 4). The predictive accuracies of
leaf chemistry and photosynthetic traits were often higher than for mor-
phological and structural traits such as leaf dry mass (R2 =0.27) and
leaf area (R2 =0.43) (Fig. 3). At the pantropical level, the highest pre-
diction accuracy was obtained for leaf thickness (R2 =0.52) for mor-
phological and structural traits, for leaf Ca (Ca%; R2 =0.64) and leaf K
(K%; R2 =0.63) for the chemical traits other than carbon. Leaf N and P
concentrations were also predicted with high accuracy (R2 =0.59). Leaf
photosynthetic capacity traits, Amax and Asat, showed some of the high-
est prediction accuracies ranging from R2 =0.55 to 0.67, respectively.
Model spatial predictions for several traits and locations are shown in
Fig. 4 and others can be seen in Fig. S1-Fig. S7.

Models built for each tropical region and trait uncovered marked
differences in prediction accuracy among them (Fig. 5; Table 5 and
Table S5). Leaf area prediction accuracy ranged from R2 =0.04 (Brazil
-ST) to 0.35 (Australia),

Table 4
Statistical results on the test data (20% of full dataset) for the global trait distribution
models. The prediction accuracy is shown by the R2 score.

Type Trait MAE RMSE R2

Morphological and structural Area (cm2) 28.32 39.854 0.43
Dry mass (g) 0.349 0.48 0.27
Fresh mass (g) 0.799 1.075 0.26
SLA (m2 g−1) 0.001 0.001 0.50
Thickness (mm) 0.034 0.046 0.52

Chemistry LWC (%) 3.718 4.886 0.36
C (%) 1.237 1.615 0.70
Ca (%) 0.14 0.204 0.64
K (%) 0.133 0.186 0.63
Mg (%) 0.055 0.075 0.46
N (%) 0.23 0.3 0.59
P (%) 0.015 0.02 0.59

Photosynthetic Amax (μmolm−2 s−1) 2.89 3.937 0.67
Asat (μmolm−2 s−1) 1.297 1.734 0.55

MAE: Mean Absolute Error; RMSE: Root mean square error.
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Fig. 3. Model predictions to the 20% test data from the general model which was fitted with 80% of the trait data from across the tropics. Grey dots are the observed against predicted
trait values of the pixel-level (10×10m) community weighted mean traits from the test dataset. The black line shows the 1:1 relationship between observed and predicted values. Model
prediction accuracy is shown in the top left. Full model results are shown in Table 4.
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Fig. 4. Spatial predictions of trait distributions for a selected subset of plant traits and locations. The map (middle) shows the locations of vegetation plots that were used during the
modelling framework. The spatial predictions (top and bottom rows) were obtained using the general models (Table 4) for each of the traits and locations at a 10×10m pixel resolution.
The approximated location of each vegetation plot used is shown as a white square within each spatial prediction map (for visualisation purposes white squares are not scaled to the plot's
real size). Spatial predictions for other traits can be found in Fig. S1-S7.

and that of specific leaf area (SLA) ranged from R2 =0.06 for Malaysia
to 0.54 for Brazil -NX (Table S5). The local models showed a higher
accuracy for predicting local level leaf chemical nutrients (up to
R2 =0.68), especially for P, Ca, and N concentrations in comparison to
morphological (e.g. leaf area and SLA) traits (Table 5; Fig. 5). Traits re-
lated to photosynthetic capacity showed an overall better prediction ac-
curacy than leaf area and SLA with prediction values ranging between
0.36 (Peru) to 0.49 (Ghana) for Amax and up to 0.52 for Asat (Brazil
-NX; Fig. 5). On average the highest prediction accuracy across regions
for a given trait were reached for leaf P concentration (R2 =0.47) and
Amax (R2 =0.44) and the locations with the highest average predic-
tion accuracy across traits were the Nova Xavantina savanna (Brazil
-NX, R2 =0.40) and the Peru elevation gradient (R2 =0.38; Table 5),
both sites encompassing strong gradients in vegetation morphology and
structure.

3.3. Importance of spectral remote sensing, climatic and soil data for
mapping trait distributions

We included Sentinel-2 band derived reflectance values, vegetation
indices, their canopy texture parameters, climatic and soil variables
in the general trait models to predict community level traits at the
pixel-level (Table 3). The importance of these variables for predicting
traits depended on the specific trait being addressed (Fig. 6). In the
global model, the remote sensing texture parameters were the first or
second major contributor for predicting nine of the functional traits
across the tropics (Fig. 6 and Fig. S9). Raw spectral variables were
the second most important group for predicting four of such functional
traits but often lower in importance than the textural parameters. In
the global model, soil and terrain factors were on average some of the
most important for predicting photosynthetic traits and foliar P concen-
tration. On average, climatic variables were important for predicting 11
out of 14 functional traits but their contribution was lower for predict-
ing leaf dry and fresh mass and leaf water content (Fig. 6). However, it
is evident that a combination of textural, spectral, climatic and soil in-
formation is required to obtain the best general model predictions across
functional traits and no single variable appears as the most important
across all traits (Fig. S9).

The local models provided a site-specific view of the most important
remote sensing derived variables, environmental and soil conditions for
deriving community level traits composition (Fig. S10). Sentinel-2 re-
mote sensing related variables were more important for detecting leaf
morphology and nutrient values than environmental and soil related
variables in 88% of the trait models (in 75 out of 85 possible traits by
region combinations). Eighty-one percent of the time (69 location by
trait combinations) the canopy texture parameters were more important
than the raw spectral reflectance factors. In 5.9% and 4.7% of the pos-
sible trait and region combinations, climatic or soil-topography related
variables respectively were the most important for detecting community
traits (Fig. S10).

4. Discussion

To the best of our knowledge, this is the first study evaluating the
ability of Sentinel-2 satellite data to map plant functional traits across
tropical ecosystems. Tropical forest trait mapping is fundamental for un-
derstanding of plant responses to global change, and notably the plant
functional traits we predict in this study are relevant to plant species
responses to a changing environment (Both et al., 2019; Nunes et al.,
2019; Soudzilovskaia et al., 2013; Aguirre-Gutiérrez et al., 2019). We
have demonstrated that accurate pixel-level (10×10m) predictions of
tropical forest functional trait distributions across the tropics can be
generated by making use of extensive in-situ collected plant functional
traits, geo-located canopy structure, vegetation censuses and high spec-
tral and spatial resolution remote sensing data from the Sentinel-2 satel-
lites.

4.1. Tropical forest trait distributions

Plant functional traits are characteristics that aid species to thrive in
their environment or adapt to new conditions. Given such adaptations
to specific environments it might be expected that trait variation would
be higher in regions that encompass more varied environmental con-
ditions (Enquist et al., 2015). Environmental adaptation is exemplified
by the strong variation in values for most traits in Peru and Malaysia.
In Peru, the data represent a climatic and altitudinal gradient ranging
from the lowland Amazon in the Tambopata National Park at an ele-
vation of 200–225 masl to plots in Acjanaco at above 3000 masl. In
Malaysia, the vegetation plots are distributed across a land-use gradient
ranging from undisturbed to heavily logged forests (Both et al., 2019).
Environmental adaptation may be also shown by the observed differ-
ences in trait distributions between different regions across the tropics
(e.g. Australia and Gabon; see also Fig. 2). The pixel-based community
trait values in the Peruvian transect often extend across much of the
range in trait values observed in other locations (Fig. 2). We detected
an overall significant difference among locations in terms of morpho-
logical, chemical and photosynthetic traits (Table S2). This wide varia-
tion in traits suggests the presence of local biotic and abiotic controls of
trait distributions and plant species adaptations that may differ among
tropical regions. Such differences in trait composition highlight the im-
portance and the challenge of sampling as fully as possible the func-
tional trait diversity across different tropical forests. This is of pivotal
importance when comparing forest responses to changing environments
across multiple regions. We thus suggest that further field trait survey
campaigns across the tropics are needed to improve pantropical trait
predictions. As for the local biotic and abiotic controls of trait distri-
butions, for instance, it is widely known that African tropical forests
are in general less species diverse than their Asian and South Ameri-
can counterparts but that they have some of the highest biomass carbon
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Fig. 5. Models predictions to the 20% test data from the regional models fitted with 80% of the trait data from each region across the tropics. Each colour represents an individual regional
model and the coloured symbols are the observed against predicted trait values of the pixel-level (10×10m) community weighted mean traits from the test dataset. The black line shows
the 1:1 relationship between observed and predicted values. Model prediction accuracy is shown in Table 5. Full model results are shown in Table S5. Brazil -NX: Nova Xavantina; Brazil
-ST: Santarem.
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Table 5
Prediction accuracy (R2) on the testing data among regions (shaded Region mean R2 column) and functional traits (shaded Trait mean R2 row). Not shaded values in the table show the
prediction accuracy (R2) on the test data per region and trait.

-: no data available; Brazil -NX: Nova Xavantina; Brazil -ST: Santarem.

storage capacity per unit area (Sullivan et al., 2017). Tropical forests
in West Africa are in general drier in comparison to Amazonian tropi-
cal forests (Parmentier et al., 2007) and some African regions such as
Gabon have experienced increases in temperature and decreases in pre-
cipitation over the last 30years (Bush et al., 2020). Thus, such changes
in climatic conditions as those observed in West African tropical forest
may also underlie variations in species composition and the locally ob-
served functional trait pool as shown in this study. It is also worth not-
ing that two caveats of the community-weighted mean trait approach
may account for part of the unexplained trait variation. First, it makes
the assumption of a unique functional optimum in a given environment,
while multiple optimal strategies – potentially corresponding to con-
trasting trait values – could coexist (Laughlin et al., 2018). Secondly, it
does not account for the dynamic nature of communities, so that a com-
munity weighted mean at a given time point might not encompass the
optimum at equilibrium (Laughlin et al., 2018).

Morphological and structural traits such as leaf area, fresh and dry
mass, leaf thickness, SLA and LWC, represent trade-offs between en-
ergy acquisition, consumption and survival and form a main part of
the global spectrum of plant functioning (Díaz et al., 2016). Besides in-
vestigating the predictability of such plant structural traits, we further
analysed the potential for predicting leaf chemistry (C, K, Mg, Ca, N,
P) and photosynthesis related traits (Amax and Asat). Mapping chemical
and photosynthetic traits at a pantropical scale has the potential for in-
creasing our understanding of how photosynthetic capacity shifts across
tropical regions and on possible impacts of a changing environment on
tropical forests productivity (Guan et al., 2015; Mueller et al., 2014).

4.2. Sentinel-2 remote sensing for mapping community level trait
distributions across the tropics

In their pioneering work with hyperspectral imagery and simulated
multispectral Sentinel-2 data over Ghana, Laurin et al. (2016) demon-
strated that Sentinel-2 imagery could be used to discriminate tropical
forest types and map plant functional types. The authors argued that
the full band set and vegetation indices derived from the Sentinel-2
would be advantageous for accurately mapping plant functional guilds
in the tropics. By using functional trait data collected in situ across
tropical forests and modelling at high spatial resolution (pixel-level)
we show that most of our global trait distribution models present a
high predictive power for most traits analysed, with prediction accu-
racy on the testing datasets being highest for predicting leaf chem-
ical and photosynthetic capacity traits. However, we also show that
the local level trait models produced less accurate predictions than
the global models, probably as a result of the narrower range of in
plant trait values found at the local region in comparison to across
the regions, something also shown by Wallis et al. (2019). The pre-
diction accuracy obtained from our models using Sentinel-2 multispec-
tral data is similar and in some cases higher than that shown by re-
cent studies that make use of hyperspectral imagery and other mul-
tispectral sensors to map functional traits (Martin et al., 2018; Asner
et al., 2017; Asner et al., 2015). For instance our predictions on test
data for leaf nitrogen, phosphorus and carbon are comparable or higher
than those obtained by other innovative studies in Malaysia (R2 =0.46,
0.44 and 0.48 respectively; Martin et al., 2018), Peru (R2 =0.48, 0.39
and 0.44; Asner et al., 2015) and temperate forests (R2 =0.55,

0.22, 0.46; Nunes et al., 2017), and closely related to those obtained
by Wallis et al. (2019) with other multispectral sensor for nitrogen and
phosphorus (R2 =0.65 and 0.65). Specially the work of Asner et al.
(2017) has shown how such plant trait predictions (with its inherent ac-
curacies) can be used for other applications such as to guide biodiver-
sity conservation actions. In our approach we resample the 20m spatial
resolution bands from the Sentinel-2 to 10m pixels as to work with the
highest spatial resolution available for most spectral bands. Such resam-
pling could in principle have an effect on the match between the tree
canopies' reflectance signal and the spectral signal from the Sentinel-2
pixel and could thus influence the textural parameters, by for instance,
detecting lower heterogeneity.

Some of the leaf chemistry we modelled can be directly related to the
reflectance obtained from the Sentinel-2 remote sensor in the visible,
infrared and red-edge regions which capture the leaf biogeochemistry
(Ustin and Gamon, 2010). For instance, it has been shown how carbon
and carbon containing metabolites peak in reflectance at around 550nm
(band 3 in the Senitnel-2) and at the lower part of the 702–715nm (Ely
et al., 2019), which would be depicted best by the red-edge band 5 in
the Sentinel-2. such spectral behaviour captured by the Sentinel-2 bands
contributed to the high prediction accuracy of leaf carbon in our study.
Our models show how Sentinel-2 imagery, and especially the canopy
texture parameters derived from it, can be especially useful for mapping
traits related to leaf chemistry (Fig. 2 and Fig. S9). Moreover, our high
predictive accuracy for photosynthetic capacity (Amax, Asat) is consistent
with studies carried out in other vegetation types (e.g. agroecosystems;
Serbin et al., 2015) where a strong association was shown between pho-
tosynthesis related traits and the red-edge spectral region. Sentinel-2 has
3 bands over the red-edge spectral region (bands 5, 6, 7) and two over
the near infrared (bands 8 and 8a) with different bandwidths, which as
shown by Shiklomanov et al. (2016) can be advantageous for detecting
foliar nutrients such as leaf N (Schlemmer et al., 2013), as small dif-
ferences in wavelength position in different bands may impact their ca-
pacity to retrieve canopy trait characteristics. Moreover, the strong re-
lationship between photosynthetic capacity and spectral reflectance can
be partly captured from the leaf N signal, as leaf N concentrations are
strongly associated with photosynthetic capacity (Reich, 2012; Vincent,
2001). The N reflectance signal is often best obtained in wavebands cen-
tred between 440 and 570nm (Ferwerda et al., 2005).

In this study we leverage evidence on covariation among traits to
estimate and predict values of traits that have no clear physical ef-
fects on spectral reflectance. There is ample evidence of the existence
of covariation among plant traits, as for instance between leaf N con-
centration, specific leaf area and leaf longevity (Walker et al., 2017).
Such covariation among traits may in principle also represent covari-
ation in the spectral reflectance patterns across vegetation types (Ma
et al., 2019), especially if such individuals vary in leaf structural tis-
sue that drive energy scattering and reflectance (Ollinger, 2011). Such
covariation between traits can be helpful for mapping functional trait
diversity across large spatial extents that include diverse vegetation
types (Townsend et al., 2003; Both et al., 2019). We show that the
spectral reflectance, image textural parameters (Entropy and Correla-
tion), climate and soil, are highly relevant for modelling plant trait dis-
tributions across the tropics with high prediction accuracy. However,
the canopy texture parameters (Entropy and Correlation) are some of
the most important for attaining high trait prediction accuracies across
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Fig. 6. Group median variable importance of spectral remote sensing, environmental and soil related variables for determining functional trait predictions in the global model. Variable
importance (Y axis) ranges from 0 (no importance) to 1 (highest importance) and represents the decrease in node impurities from splitting on the variable, averaged over all trees and
derived from the Out of Bag error, the resulting value has been standardised to a 0–1 scale for comparison purposes. The spectral group (S2 -Spectral) contains the select raw bands
from the Sentinel-2 and the vegetation indices; Texture parameters (S2 -Texture) contain the Correlation and Entropy metrics from the grey level co-occurrence matrix obtained from the
vegetation indices; Climate contains all climatic variables; Soil-Terrain contains all soil characteristics and slope. All variables are described in Table 3.

plant functional traits (Sarker and Nichol, 2011; Wallis et al., 2019) and
differences in spectral, climatic and soil conditions between different re-
gions are key components for improving model predictions across broad
spatial extents.

Image texture parameters were derived from the vegetation indices
that we calculated, which in turn were derived from the raw spectral
bands of the Sentinel-2. Thus, the texture metrics besides taking advan-
tage of the high spectral resolution of the sensor also take advantage
of its high spatial resolution. Although the raw spectral bands of the
Sentinel-2 were not as important for predicting some functional traits
as image texture, it is relevant to consider that texture values tend to
differ based on the spatial resolution of the underlying data on which
they are based. A larger pixel (e.g. Landsat's 30×30m pixels) may thus
mask differences in the landscape that could in principle be captured

by the Sentinel 10×10m resolution texture generated metrics. This
therefore highlights the relevance of Sentinel-2 imagery for functional
plant functional trait predictions in comparison to others with lower
spectral and spatial resolution. Image texture parameters can help char-
acterise the upper surface of the vegetation, which in our study is
composed of varied sets of functional trait characteristics that con-
fer them different spectral responses. When such spectral differences
are analysed with grey level co-occurrence matrices, the generated im-
age texture parameters (e.g. entropy and correlation) can help dif-
ferentiate contrasting vegetation in the landscape. The role of tex-
ture parameters for modelling biomass and functional traits has also
been recognised by other studies focusing not only on mapping func-
tional traits along elevation gradients but also for estimating stand-
ing biomass (Wallis et al., 2019). Moreover, such rele
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vance of texture parameters does not seem to be limited to the spa-
tial resolution of the Sentinel-2 imagery as shown when using high spa-
tial resolution SPOT imagery for modelling forest aboveground biomass
(Hlatshwayo et al., 2019) and WorldView-3 for tree species identifica-
tion (Ferreira et al., 2019), or lower spatial resolution data as that from
the Landsat (Wallis et al., 2019). Other added value of the Sentinel-2
in contrast to finer spatial resolution satellites (e.g. SPOT and World-
View-3) is its high revisit period, to obtain cloud free imagery, and
it's free availability. Moreover, soil properties can be informative when
modelling trait distributions across regions in the tropics as they partly
drive the plant functional and species compositional turnover (Prada et
al., 2017; Asner et al., 2016). In our study different vegetation plots ap-
peared to be on soils with different parent materials resulting in varying
cation exchange capacity, pH and soil texture, and thus including differ-
ences between sites contributes to increasing the prediction accuracy of
trait distributions.

Although in the past it was thought not to be possible to map indi-
vidual plant species or functional traits (Price, 1994; Ustin and Gamon,
2010), the advent of remotely sensed data with high spectral, spatial
and temporal resolution has made it possible to extract information
on the chemical and structural composition of forest canopies even in
highly biodiverse tropical forests. This has been demonstrated with the
use of hyperspectral sensors (Asner et al., 2017; Asner et al., 2015; Jetz
et al., 2016), which often collect hundreds of spectral bands at very
high spatial and spectral resolutions but at relatively small spatial ex-
tents and often without temporal replication. More research is needed
to disentangle to what extent hyperspectral data offers more informa-
tion to that offered by the Sentinel-2 sensors for an increased mapping
accuracy of functional traits of tropical forests. As shown by Laurin et
al. (2016), results obtained with simulated Sentinel-2 data are highly
comparable to those obtained from hyperspectral imagery for mapping
forest types, dominant tree species and functional guilds. Being able to
monitor functional traits at high spatial and temporal resolution with
multispectral data ranging from the visible to the shortwave infrared
across the tropics and with freely available data opens new opportuni-
ties for understanding the effects of environmental changes on biodiver-
sity at a local scale. This is because functional traits play a major role
in determining ecosystem productivity and functioning, e.g. carbon cap-
ture (Díaz et al., 2019; Carmona et al., 2016). Moreover, spatially ex-
plicit models of functional traits shift across the tropics can help deci-
pher how ecosystem functioning varies even among tropical areas, pro-
viding a cost-effective pathway to identifying regions of high conserva-
tion value and hence aid in the creation of locally adequate biodiver-
sity conservation policies. Overall, our findings are of relevance for in-
forming biodiversity monitoring policies under ecosystem change as we
show that accurate predictions of relevant plant functional traits can be
obtained in high biodiversity areas such as the tropics. Our approach
thus facilitates tracking possible shifts in trait distributions and composi-
tion across large spatial extents as a response to environmental changes
using the Sentinel-2 satellites.

5. Conclusions

Tropical forest ecosystems are witnessing a rapid transformation as
a result of changing environmental conditions and direct human im-
pacts (Lewis et al., 2015; Taubert et al., 2018; Aguirre-Gutiérrez et al.,
2019). However, we cannot adequately understand or simulate tropi-
cal ecosystem responses to environmental changes based solely on cur-
rent ecosystem model approaches as these are unable to capture the
high diversity of plant ecosystem functions in the species-rich trop-
ics. Neglect of functional biodiversity can oversimplify the simulated
response of an ecosystem to an environmental disturbance. Here we
show the high variation in functional traits that exists among trop-
ical regions, which hints at the different capabilities of such forests
to respond to a changing environment. We demonstrate opportuni-
ties for measuring the distribution of key functional traits across trop-
ical forest ecosystems at the pixel-level using the Sentinel-2 satellites,
which if done across time could reveal areas where functional shifts
have occurred and likely where biodiversity conservation/ameliora-
tion measures are needed. Although the Sentinel-2 satellites show high

promise for this endeavour, our approach is limited by the short time
interval since they were launched (i.e. 2015) and the lower spectral res-
olution of Sentinel-2 imagery in comparison to that derived from hyper-
spectral sensors. Methods and data products are needed to track changes
in functional composition in forest ecosystems across time and space.
We demonstrate a new approach to develop a rapid monitoring tool
for capturing the effects of a changing environment across the tropics.
This new tool has the potential to contribute to a more robust and ev-
idence-based policy-making for conservation of tropical forest ecosys-
tems.

Authorship contribution statement

J.A.G. conceived the study, designed and carried out the analysis and
wrote the first draft of the paper. Y.M. conceived and implemented the
GEM Network, obtained funding for most of the GEM traits field cam-
paigns and commented on earlier versions of the manuscript. S.R. ad-
vised on statistical and remote sensing analysis and commented on ear-
lier versions of the manuscript. All co-authors participated in or coordi-
nated vegetation, trait data and/or soil data collection or processed field
data. The authors named between S.A.B. and L.J.T.W. are listed alpha-
betically. All co-authors commented on and approved the manuscript.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work is a product of the Global Ecosystems Monitoring (GEM)
network (gem.tropicalforests.ox.ac.uk). J.A.G. was funded by the Nat-
ural Environment Research Council (NERC; NE/T011084/1 and NE/
S011811/1) and the Netherlands Organization for Scientific Research
(NWO) under the Rubicon programme with project number
019.162LW.010. The traits field campaign was funded by a grant to
Y.M. from the European Research Council (Advanced Grant
GEM-TRAIT: 321131) under the European Union‘s Seventh Framework
Programme (FP7/2007-2013), with additional support from NERC
Grant NE/D014174/1 and NE/J022616/1 for traits work in Peru, NERC
Grant ECOFOR (NE/K016385/1) for traits work in Santarem, NERC
Grant BALI (NE/K016369/1) for plot and traits work in Malaysia and
ERC Advanced Grant T-FORCES (291585) to Phillips for traits work in
Australia. Plot setup in Ghana and Gabon were funded by a NERC Grant
NE/I014705/1 and by the Royal Society-Leverhulme Africa Capacity
Building Programme. The Malaysia campaign was also funded by NERC
Grant NE/K016253/1. Plot inventories in Peru were supported by fund-
ing from the US National Science Foundation Long-Term Research in
Environmental Biology program (LTREB; DEB 1754647) and the Gor-
don and Betty Moore Foundation Andes-Amazon Program. Plots inven-
tories in Nova Xavantina (Brazil) were supported by the National Coun-
cil for Scientific and Technological Development (CNPq), Long Term
Ecological Research Program (PELD), Proc. 441244/2016-5, and the
Foundation of Research Support of Mato Grosso (FAPEMAT), Project
ReFlor, Proc. 589267/2016. During data collection, I.O. was supported
by a Marie Curie Fellowship (FP7-PEOPLE-2012-IEF-327990). GEM trait
data in Gabon was collected under authorisation to Y.M. and supported
by the Gabon National Parks Agency. D.B. was funded by the Fonda-
tion Wiener-Anspach. W.D.K. acknowledges support from the Faculty
Research Cluster ‘Global Ecology’ of the University of Amsterdam. M.S.
was funded by a grant from the Ministry of Education, Youth and Sports
of the Czech Republic (INTER-TRANSFER LTT19018). Y.M. is supported
by the Jackson Foundation. We thank the two anonymous reviewers and
Associate Editor G. Henebry for their insightful comments that helped
improved this manuscript.



UN
CO

RR
EC

TE
D

PR
OO

F

J. Aguirre-Gutiérrez et al. Remote Sensing of Environment xxx (xxxx) xxx-xxx

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.rse.2020.112122.

References

Abatzoglou, J.T., Dobrowski, S.Z., Parks, S.A., Hegewisch, K.C., 2018. TerraClimate, a
high-resolution global dataset of monthly climate and climatic water balance from
1958–2015. Sci. data 5, 170191.

Aguirre-Gutiérrez, J., Oliveras, I., Rifai, S., Fauset, S., Adu-Bredu, S., Affum-Baffoe, K., et
al., 2019. Drier tropical forests are susceptible to functional changes in response to a
long-term drought. Ecol. Lett. 22, 855–865.

Ali, A.M., Darvishzadeh, R., Skidmore, A.K., 2017. Retrieval of specific leaf area from land-
sat-8 surface reflectance data using statistical and physical models. IEEE J. Selected
Topics Appl. Earth Obs. Remote Sens. 10, 3529–3536.

Asner, G.P., Martin, R.E., Anderson, C.B., Knapp, D.E., 2015. Quantifying forest canopy
traits: imaging spectroscopy versus field survey. Remote Sens. Environ. 158, 15–27.

Asner, G.P., Knapp, D.E., Anderson, C.B., Martin, R.E., Vaughn, N., 2016. Large-scale cli-
matic and geophysical controls on the leaf economics spectrum. Proc. Natl. Acad. Sci.
113, E4043–E4051.

Asner, G.P., Martin, R.E., Knapp, D.E., Tupayachi, R., Anderson, C.B., Sinca, F., et al.,
2017. Airborne laser-guided imaging spectroscopy to map forest trait diversity and
guide conservation. Science 355, 385–389.

Barnes, E.M., Clarke, T.R., Richards, S.E., Colaizzi, P.D., Haberland, J., Kostrzewski, M.,
et al., 2000. Coincident Detection of Crop Water Stress, Nitrogen Status and Canopy
Density using Ground Based Multispectral Data. 1619.

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., et al., 2010. Ter-
restrial gross carbon dioxide uptake: global distribution and covariation with climate.
Science 329, 834–838.

Both, S., Riutta, T., Paine, C.T., Elias, D.M., Cruz, R.S., Jain, A., et al., 2019. Logging and
soil nutrients independently explain plant trait expression in tropical forests. New Phy-
tol. 221, 1853–1865.

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32.
Bush, E.R., Jeffery, K., Bunnefeld, N., Tutin, C., Musgrave, R., Moussavou, G., et al.,

2020. Rare ground data confirm significant warming and drying in western equatorial
Africa. PeerJ 8, e8732.

Cadotte, M.W., Carscadden, K., Mirotchnick, N., 2011. Beyond species: functional diver-
sity and the maintenance of ecological processes and services. J. Appl. Ecol. 48,
1079–1087.

Carmona, C.P., de Bello, F., Mason, N.W., Lepš, J., 2016. Traits without borders: integrat-
ing functional diversity across scales. Trends Ecol. Evol. 31, 382–394.

Chave, J., Muller-Landau, H.C., Baker, T.R., Easdale, T.A., Steege, H.t., Webb, C.O., 2006.
Regional and phylogenetic variation of wood density across 2456 neotropical tree
species. Ecol. Appl. 16, 2356–2367.

Clark, M.L., 2017. Comparison of simulated hyperspectral HyspIRI and multispectral Land-
sat 8 and Sentinel-2 imagery for multi-seasonal, regional land-cover mapping. Remote
Sens. Environ. 200, 311–325.

Daughtry, C., Walthall, C.L., Kim, M.S., De Colstoun, E.B., McMurtrey Iii, J.E., 2000. Esti-
mating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote
Sens. Environ. 74, 229–239.

Díaz, S., Cabido, M., 2001. Vive la différence: plant functional diversity matters to ecosys-
tem processes. Trends Ecol. Evol. 16, 646–655.

Díaz, S., Kattge, J., Cornelissen, J.H., Wright, I.J., Lavorel, S., Dray, S., et al., 2016. The
global spectrum of plant form and function. Nature 529, 167–171.

Díaz, S., Settele, J., Brondízio, E., Ngo, H.T., Guèze, M., Agard, J., et al., 2019. Sum-
mary for policymakers of the global assessment report on biodiversity and ecosystem
services of the intergovernmental science-policy platform on biodiversity and ecosys-
tem services. In: https://www.ipbes.net/sites/default/files/downloads/spm_unedited_
advance_for_posting_htn.pdf, ADVANCE UNEDITED VERSION.

Ely, K.S., Burnett, A.C., Lieberman-Cribbin, W., Serbin, S.P., Rogers, A., 2019. Spec-
troscopy can predict key leaf traits associated with source–sink balance and car-
bon–nitrogen status. J. Exp. Bot. 70, 1789–1799.

Enquist, B.J., Norberg, J., Bonser, S.P., Violle, C., Webb, C.T., Henderson, A., et al., 2015.
Scaling from traits to ecosystems: developing a general trait driver theory via integrat-
ing trait-based and metabolic scaling theories. In: Anonymous Advances in Ecological
Research. Elsevier, pp. 249–318.

Enquist, B.J., Bentley, L.P., Shenkin, A., Maitner, B., Savage, V., Michaletz, S., et al., 2017.
Assessing trait-based scaling theory in tropical forests spanning a broad temperature
gradient. Glob. Ecol. Biogeogr. 26, 1357–1373.

Esquivel-Muelbert, A., Baker, T.R., Dexter, K.G., Lewis, S.L., Brienen, R.J., Feldpausch,
T.R., et al., 2019. Compositional response of Amazon forests to climate change. Glob.
Chang. Biol. 25, 39–56.

Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., et al., 2007. The shut-
tle radar topography mission. Rev. Geophys. 45.

Fell, M., Ogle, K., 2018. Refinement of a theoretical trait space for north American trees
via environmental filtering. Ecol. Monogr. 88, 372–384.

Ferreira, M.P., Wagner, F.H., Aragão, L.E., Shimabukuro, Y.E., & de Souza Filho, Carlos
Roberto. (2019). Tree species classification in tropical forests using visible to short-
wave infrared WorldView-3 images and texture analysis. ISPRS J. Photogramm. Re-
mote Sens., 149, 119–131.

Ferwerda, J.G., Skidmore, A.K., Mutanga, O., 2005. Nitrogen detection with hyperspec-
tral normalized ratio indices across multiple plant species. Int. J. Remote Sens. 26,
4083–4095.

Gallagher, R.V., Falster, D.S., Maitner, B.S., Salguero-Gómez, R., Vandvik, V., Pearse, W.D.,
et al., 2020. Open Science principles for accelerating trait-based science across the
tree of life. Nat. Ecol. Evol. 4, 294–303.

Georganos, S., Grippa, T., Gadiaga, A.N., Linard, C., Lennert, M., Vanhuysse, S., et al.,
2019. Geographical random forests: a spatial extension of the random forest algorithm
to address spatial heterogeneity in remote sensing and population modelling. Geocarto
Int. 1–12.

Grime, J.P., 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder
effects. J. Ecol. 86, 902–910.

Guan, K., Pan, M., Li, H., Wolf, A., Wu, J., Medvigy, D., et al., 2015. Photosynthetic sea-
sonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284.

Gvozdevaite, A., Oliveras, I., Domingues, T.F., Peprah, T., Boakye, M., Afriyie, L., et
al., 2018. Leaf-level photosynthetic capacity dynamics in relation to soil and foliar
nutrients along forest–savanna boundaries in Ghana and Brazil. Tree Physiol. 38,
1912–1925.

Haralick, R.M., Shanmugam, K., Dinstein, I.H., 1973. Textural features for image classifi-
cation. In: IEEE Transactions on Systems, Man, and Cybernetics. pp. 610–621.

Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning, 2nd
edn York, New.

Hawthorne, W.D., 1995. Ecological Profiles of Ghanaian Forest Trees, (Tropical forestry
papers).

Hédl, R., Svátek, M., Dančák, M., Rodzay, A.W., Salleh, A.B., Kamariah, A.S., 2009. A new
technique for inventory of permanent plots in tropical forests: a case study from low-
land dipterocarp forest in Kuala Belalong, Brunei Darussalam. Blumea-Biodiv. Evol.
Biogeo. Plants 54, 124–130.

Hengl, T., de Jesus, J.M., Heuvelink, G.B., Gonzalez, M.R., Kilibarda, M., Blagotić, A., et
al., 2017. SoilGrids250m: global gridded soil information based on machine learning.
PLoS One 12, e0169748.

Hlatshwayo, S.T., Mutanga, O., Lottering, R.T., Kiala, Z., Ismail, R., 2019. Mapping for-
est aboveground biomass in the reforested Buffelsdraai landfill site using texture com-
binations computed from SPOT-6 pan-sharpened imagery. Int. J. Appl. Earth Obs.
Geoinf. 74, 65–77.

Huang, W., Ratkowsky, D.A., Hui, C., Wang, P., Su, J., Shi, P., 2019. Leaf fresh weight
versus dry weight: which is better for describing the scaling relationship between leaf
biomass and leaf area for broad-leaved plants?. Forests 10, 256.

Hubau, W., Lewis, S.L., Phillips, O.L., Affum-Baffoe, K., Beeckman, H., Cuní-Sanchez, A.,
et al., 2020. Asynchronous carbon sink saturation in African and Amazonian tropical
forests. Nature 579, 80–87.

Jetz, W., Cavender-Bares, J., Pavlick, R., Schimel, D., Davis, F.W., Asner, G.P., et al., 2016.
Monitoring plant functional diversity from space. Nat. Plants 2, 16024.

Jucker, T., Bongalov, B., Burslem, D.F., Nilus, R., Dalponte, M., Lewis, S.L., et al., 2018.
Topography shapes the structure, composition and function of tropical forest land-
scapes. Ecol. Lett. 21, 989–1000.

Juneau, K.J., Tarasoff, C.S., 2012. Leaf area and water content changes after permanent
and temporary storage. PLoS One 7, e42604.

Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., et al., 2020. TRY
plant trait database–enhanced coverage and open access. Glob. Chang. Biol.

Kissling, W.D., Walls, R., Bowser, A., Jones, M.O., Kattge, J., Agosti, D., et al., 2018. To-
wards global data products of essential biodiversity variables on species traits. Nat.
Ecol. Evol. 2, 1531–1540.

Laughlin, D.C., Strahan, R.T., Adler, P.B., Moore, M.M., 2018. Survival rates indicate that
correlations between community-weighted mean traits and environments can be un-
reliable estimates of the adaptive value of traits. Ecol. Lett. 21, 411–421.

Laurin, G.V., Puletti, N., Hawthorne, W., Liesenberg, V., Corona, P., Papale, D., et al.,
2016. Discrimination of tropical forest types, dominant species, and mapping of func-
tional guilds by hyperspectral and simulated multispectral Sentinel-2 data. Remote
Sens. Environ. 176, 163–176.

Lebrija-Trejos, E., Pérez-García, E.A., Meave, J.A., Bongers, F., Poorter, L., 2010. Func-
tional traits and environmental filtering drive community assembly in a species-rich
tropical system. Ecology 91, 386–398.

Lewis, S.L., Edwards, D.P., Galbraith, D., 2015. Increasing human dominance of tropical
forests. Science 349, 827–832.

Lortie, C.J., Brooker, R.W., Choler, P., Kikvidze, Z., Michalet, R., Pugnaire, F.I., et al.,
2004. Rethinking plant community theory. Oikos 107, 433–438.

Ma, X., Mahecha, M.D., Migliavacca, M., van der Plas, F., Benavides, R., Ratcliffe, S., et
al., 2019. Inferring plant functional diversity from space: the potential of Sentinel-2.
Remote Sens. Environ. 233, 111368.

Malhi, Y., Roberts, J.T., Betts, R.A., Killeen, T.J., Li, W., Nobre, C.A., 2008. Climate
change, deforestation, and the fate of the Amazon. Science 319, 169–172.

Malhi, Y., Rowland, L., Aragao, L.E.O.C., Fisher, R.A., 2018. New insights into the vari-
ability of the tropical land carbon cycle from the El Nino of 2015/2016. Philos. Trans.
Royal Soc. London. Series B. 373, https://doi.org/10.1098/rstb.2017.0298.

Martin, M.E., Plourde, L.C., Ollinger, S.V., Smith, M., McNeil, B.E., 2008. A generalizable
method for remote sensing of canopy nitrogen across a wide range of forest ecosys-
tems. Remote Sens. Environ. 112, 3511–3519.

Martin, R.E., Chadwick, K.D., Brodrick, P.G., Carranza-Jimenez, L., Vaughn, N.R., Asner,
G.P., 2018. An approach for foliar trait retrieval from airborne imaging spectroscopy
of tropical forests. Remote Sens. 10, 199.

Martin, R.E., Asner, G.P., Bentley, L.P., Shenkin, A., Salinas, N., Huaypar, K.Q., et al.,
2020. Covariance of sun and shade leaf traits along a tropical Forest elevation gradi-
ent. Front. Plant Sci. 10, 1810.

McDowell, N., Allen, C.D., Anderson-Teixeira, K., Brando, P., Brienen, R., Chambers, J.,
et al., 2018. Drivers and mechanisms of tree mortality in moist tropical forests. New
Phytol. 219, 851–869.

Mueller, T., Dressler, G., Tucker, C., Pinzon, J., Leimgruber, P., Dubayah, R., et al., 2014.
Human land-use practices lead to global long-term increases in photosynthetic capac-
ity. Remote Sens. 6, 5717–5731.

Naeem, S., Bunker, D.E., Hector, A., Loreau, M., Perrings, C., 2009. Biodiversity, Ecosys-
tem Functioning, and Human Wellbeing: An Ecological and Economic Perspective. Ox-
ford University Press, 388.

Navarro, L.M., Fernández, N., Guerra, C., Guralnick, R., Kissling, W.D., Londoño, M.C., et
al., 2017. Monitoring biodiversity change through effective global coordination. Curr.
Opin. Environ. Sustain. 29, 158–169.

Nunes, M., Davey, M., Coomes, D., 2017. On the Challenges of Using Field Spectroscopy



UN
CO

RR
EC

TE
D

PR
OO

F

J. Aguirre-Gutiérrez et al. Remote Sensing of Environment xxx (xxxx) xxx-xxx

Oliver, T.H., Heard, M.S., Isaac, N.J., Roy, D.B., Procter, D., Eigenbrod, F., et al., 2015.
Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684.

Oliveras, I., Bentley, L., Fyllas, N.M., Gvozdevaite, A., Shenkin, A.F., Prepah, T., et al.,
2020. The influence of taxonomy and environment on leaf trait variation along tropi-
cal abiotic gradients. Front. Forests Global Change 3, 18.

Ollinger, S.V., 2011. Sources of variability in canopy reflectance and the convergent prop-
erties of plants. New Phytol. 189, 375–394.

Pacifici, M., Foden, W.B., Visconti, P., Watson, J.E., Butchart, S.H., Kovacs, K.M., et al.,
2015. Assessing species vulnerability to climate change. Nat. Clim. Chang. 5, 215–224.

Parmentier, I., Malhi, Y., Senterre, B., Whittaker, R.J., ATDN, Alonso, A., et al., 2007. The
odd man out? Might climate explain the lower tree α-diversity of African rain forests
relative to Amazonian rain forests?. J. Ecol. 95, 1058–1071.

Prada, C.M., Morris, A., Andersen, K.M., Turner, B.L., Caballero, P., Dalling, J.W., 2017.
Soils and rainfall drive landscape-scale changes in the diversity and functional com-
position of tree communities in premontane tropical forest. J. Veg. Sci. 28, 859–870.

Price, J.C., 1994. How unique are spectral signatures?. Remote Sens. Environ. 49,
181–186.

Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H., Sorooshian, S., 1994. A modified soil ad-
justed vegetation index. Remote Sens. Environ. 48, 119–126.

Quesada, C.A., Phillips, O.L., Schwarz, M., Czimczik, C.I., Baker, T.R., Patiño, S., et al.,
2012. Basin-wide variations in Amazon forest structure and function are mediated by
both soils and climate. Biogeosciences 9.

R Development Core Team, 2014. R: A language and environment for statistical com-
puting. R foundation for statistical computing, Vienna, Austria. ISBN
3–900051–07-0. URL http://www.R-project.org.

Reich, P.B., 2012. Key canopy traits drive forest productivity. Proceed. Royal Soc. B. 279,
2128–2134.

Sarker, L.R., Nichol, J.E., 2011. Improved forest biomass estimates using ALOS AVNIR-2
texture indices. Remote Sens. Environ. 115, 968–977.

Schlemmer, M., Gitelson, A., Schepers, J., Ferguson, R., Peng, Y., Shanahan, J., et al.,
2013. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and
canopy levels. Int. J. Appl. Earth Obs. Geoinf. 25, 47–54.

Schneider, F.D., Morsdorf, F., Schmid, B., Petchey, O.L., Hueni, A., Schimel, D.S., et al.,
2017. Mapping functional diversity from remotely sensed morphological and physio-
logical forest traits. Nat. Commun. 8, 1441.

Serbin, S.P., Singh, A., Desai, A.R., Dubois, S.G., Jablonski, A.D., Kingdon, C.C., et al.,
2015. Remotely estimating photosynthetic capacity, and its response to tempera-
ture, in vegetation canopies using imaging spectroscopy. Remote Sens. Environ. 167,
78–87.

Shenkin, A., Bentley, L.P., Oliveras, I., Salinas, N., Adu-Bredu, S., Marimon, B.H., et al.,
2019. The influence of ecosystem and phylogeny on tropical tree crown size and
shape. BioRxiv 789255.

Shiklomanov, A.N., Dietze, M.C., Viskari, T., Townsend, P.A., Serbin, S.P., 2016. Quantify-
ing the influences of spectral resolution on uncertainty in leaf trait estimates through
a Bayesian approach to RTM inversion. Remote Sens. Environ. 183, 226–238.

Soudzilovskaia, N.A., Elumeeva, T.G., Onipchenko, V.G., Shidakov, I.I., Salpagarova, F.S.,
Khubiev, A.B., et al., 2013. Functional traits predict relationship between plant abun-
dance dynamic and long-term climate warming. Proc. Natl. Acad. Sci. 110,
18180–18184.

Sullivan, M.J., Talbot, J., Lewis, S.L., Phillips, O.L., Qie, L., Begne, S.K., et al., 2017. Di-
versity and carbon storage across the tropical forest biome. Sci. Rep. 7, 39102.

Szabó, L., Burai, P., Deák, B., Dyke, G.J., Szabó, S., 2019. Assessing the efficiency of mul-
tispectral satellite and airborne hyperspectral images for land cover mapping in an
aquatic environment with emphasis on the water caltrop (Trapa natans). Int. J. Re-
mote Sens. 40, 5192–5215.

Taubert, F., Fischer, R., Groeneveld, J., Lehmann, S., Müller, M.S., Rödig, E., et al., 2018.
Global patterns of tropical forest fragmentation. Nature 554, 519.

Townsend, P.A., Foster, J.R., Chastain, R.A., Currie, W.S., 2003. Application of imaging
spectroscopy to mapping canopy nitrogen in the forests of the central Appalachian
Mountains using Hyperion and AVIRIS. IEEE Trans. Geosci. Remote Sens. 41,
1347–1354.

Ustin, S.L., Gamon, J.A., 2010. Remote sensing of plant functional types. New Phytol. 186,
795–816.

Van der Plas, F., Ratcliffe, S., Ruiz-Benito, P., Scherer-Lorenzen, M., Verheyen, K., Wirth,
C., et al., 2018. Continental mapping of forest ecosystem functions reveals a high but
unrealised potential for forest multifunctionality. Ecol. Lett. 21, 31–42.

Vincent, G., 2001. Leaf photosynthetic capacity and nitrogen content adjustment to
canopy openness in tropical forest tree seedlings. J. Trop. Ecol. 17, 495–509.

Walker, A.P., Beckerman, A.P., Gu, L., Kattge, J., Cernusak, L.A., Domingues, T.F., et al.,
2014. The relationship of leaf photosynthetic traits–Vcmax and Jmax–to leaf nitro-
gen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study. Ecol.
Evol. 4, 3218–3235.

Walker, A.P., McCormack, M.L., Messier, J., Myers-Smith, I.H., Wullschleger, S.D., 2017.
Trait covariance: the functional warp of plant diversity?. New Phytol. 216, 976–980.

Wallis, C.I., Homeier, J., Peña, J., Brandl, R., Farwig, N., Bendix, J., 2019. Modeling tropi-
cal montane forest biomass, productivity and canopy traits with multispectral remote
sensing data. Remote Sens. Environ. 225, 77–92.

Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., et al., 2004.
The worldwide leaf economics spectrum. Nature 428, 821–827.

16

View publication stats

https://www.researchgate.net/publication/344874698

	
	
	


